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Recent advances in the stability theory of toroidal plasmas
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Euratom/U.K.A.E.A. Fusion Association, Culham Laboratory,
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Many of the most persistent instabilities of a magnetically confined plasma have short
wavelength perpendicular to the magnetic field but long wavelength parallel to it.
Such instabilities are difficult to treat in a toroidal system because the simple eikonal
representation of short wavelength oscillations

X(r) — Y(r) elsS®)/s

with & < 1 proves to be incompatible with the other requirements of toroidal periodi-
city and long parallel wavelength (which would require B-VS = 0).

A new method of representing perturbations in a torus will be outlined. By using
this, the two-dimensional stability problem posed by an axisymmetric toroidal
equilibrium can be reduced to that of solving a one-dimensional eigenvalue equation.

This technique essentially completes the linear stability theory of magnetohydro-
dynamic modes in a toroidal plasma, and is also applicable to the investigation of
micro-instabilities that are described by the Vlasov—Maxwell equations.
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1. INTRODUCGTION

The most important magnetic confinement devices currently being developed and under
construction are axisymmetric toroidal devices. Of these toroidal pinches provide one example,
while tokamaks exemplified by the JET and T.F.T.R. designs dominate toroidal confinement
research. Theoretical studies of plasma stability in such devices are of importance as one
factor in determining what value of the parameter # (= 2p/B?) can be achieved in a torus
before instabilities cause an unacceptable deterioration in confinement. Much effort has been
devoted to theoretical stability analyses by means of a magnetohydrodynamic (m.h.d.) plasma
model, but although a prescription for completely determining the m.h.d. stability of an infinite
cylindrically symmetric plasma equilibrium has been available for more than a decade it is only
recently that an equivalent method has been developed for the realistic case of toroidal plasmas.

This paper is devoted to discussing the additional difficulty presented by the toroidal problem
and to outlining the progress in linear stability theory which has now made possible the com-
plete determination of m.h.d. stability thresholds and growth rates in a torus.

Although the main successes have been in the m.h.d. model the new methods are equally
applicable to the more detailed kinetic descriptions required in the study of micro-instabilities,
and these applications will also be discussed.

THE ROYAL A
SOCIETY

2. AXISYMMETRIC TOROIDAL EQUILIBRIA AND COORDINATE SYSTEMS

The magnetic field in an axisymmetric toroidal confinement device has components in both
the toroidal and poloidal directions so that magnetic lines of force lie on a set of nested toroidal
surfaces — magnetic surfaces — enclosing and degenerating into a line, the magnetic axis.
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560 R.J. HASTIE

Magnetic surfaces are conveniently labelled by the poloidal flux ¥ contained by them, and
toroidal and poloidal angles § and & complete the coordinate system.

An important equilibrium parameter is the ‘safety factor’ ¢(y), so called because of its
influence on stability, defined so that 2mq is the angle of rotation around the symmetry axis
performed by any field line in passing once around the magnetic axis. The rate of change of ¢
from surface to surface ¢’ (= dg/dy) is known as magnetic shear and is related to the change
of direction of field lines on adjacent magnetic surfaces.

toroidal angle (&)

magnetic surface ()

poloidal angle (6)

‘magnetic axis’

Ficure 1. Toroidal confinement system and (i, 8, {)-coordinates.

3. MAGNETOHYDRODYNAMIC STABILITY
(a) A brief historical survey of theory

In 1960 Newcomb, analysing the stability of an ideal m.h.d. (i.e. ¥ = 0) cylindrically
symmetric plasma, reduced the problem to that of solving a single second-order ordinary
differential equation. Inclusion of resistivity (Furth et al. 1963 ; Coppi ef al. 1966) revealed new
instabilities requiring consideration of an infinitesimal ‘resistive layer’ in the neighbourhood
of the ‘resonant surface’, i.e. that magnetic surface within the plasma on which k- B = 0,
with k the wave number of the perturbation. A complete analysis of these resistive instabilities
was also possible, by solving a pair of coupled ordinary differential equations. Thus a precise
quantitative method for calculating the m.h.d. stability of any given cylindrical equilibrium
had been formulated by the mid-sixties. ,

During the same period investigations of toroidal plasma stability were dominated by the
search for analytic stability criteria. An early success came with the derivation by Mercier
(1960) of a condition which was necessary but not sufficient to ensure stability. This predicted
an upper bound for the # which could be achieved in a torus. It did not however determine
the threshold value of f for instability.

Much insight was obtained from a series of theoretical studies (see, for example, Ware &
Haas 1966; Frieman ef al. 1973 ; Shafranov 1970; Bussac ef al. 1975) based on an expansion of
equilibrium and perturbed quantities in powers of the inverse aspect ratio ¢ = a/R = (plasma
radius) /(major toroidal radius), but many of these calculations were restricted to a low-pressure
ordering in which # ~ 0(e?) and to tori of circular cross section.

The 1970s saw the emergence of a new quantitative approach to the toroidal stability
problem with the development of large two-dimensional computer codes, either integrating
the linearized m.h.d. equations in time (Sykes & Wesson 1974; Schneider & Bateman 1975)
or solving the two-dimensional eigenvalue equations (Berger ef al. 1977; Johnson et al. 1977).
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STABILITY THEORY OF TOROIDAL PLASMAS 561

Because of the axisymmetry property different Fourier modes ei¢ are independent so that
each toroidal mode number n could be investigated separately. In practice however these
codes were restricted by computer limitations to n < 5. But whereas in the cylindrical problem
Newcomb had been able to show that of all the Fourier modes €™+ only m = 0 and m = 1
need be studied since they were the most unstable, no analogous theorem involving the toroidal
mode number n was apparent. Numerical results did not indicate that in practice low values
of n were the most unstable for internal pressure-driven modes. On the contrary, there were
indications that, as n was increased, greater instability of internal modes was usually encoun-
tered. This was the situation when Wesson (1978) gave a comprehensive review of the theory
of the m.h.d. stability of tokamak plasmas. An analytic treatment of short-wavelength (high z)
modes was still required to complement the computed, low z, results but, as we now discuss,
such a theory posed special problems in a torus.

(b) Short wavelength eigenmodes in a torus

An important feature of many short-wavelength instabilities in a magnetized plasma is the
extreme anisotropy of this wavelength in the directions parallel to and perpendicular to the
confining magnetic field. This is true for many of the micro-instabilities that are predicted by
the Vlasov—-Maxwell plasma equations, where long parallel wavelength is frequently necessi-
tated by the avoidance of ion Landau damping. It is also true for m.h.d. instabilities where
long parallel wavelengths minimize distortion of the stabilizing magnetic field which is strongly
coupled to the fluid. A central problem of plasma stability theory has therefore been to find a
way of representing such anisotropic perturbations in a toroidal system.

It is natural to attempt to describe short-wavelength oscillations in an inhomogeneous
medium by means of an eikonal representation of the form

£ = Ao, (1)

where ¢ is a small parameter representing the ratio of the wavelength of the oscillations to the
scale of the system. In the present problem the necessity for long wavelength parallel to B
requires that B-VS = 0, Fourier decomposition ~ ¢!"* determines the {-dependence of §, and
the toroidal mode number 7 naturally fills the role of the parameter é-! in equation (1), so
that taking £ = A €S one finds that § must take the form

50,69) = ¢-at) 0+ [ g ay, (2)

where 0 is the (generalizedt) poloidal angle, 6y(y) may be regarded as a reference angle
about which the mode is centred, and the rather curious form taken for the arbitrary function
containing 0,(¢) is for later convenience. This eikonal is however clearly unacceptable since

1
t The angle 0 used here is defined by 0 = 2n f Bc(RBo)“ldl/ §BC(RBO)“1 d/ where [ is arc length in the

poloidal direction, so that , 8, i form a non-orthogonal coordinate system in which the field lines are straight,
d¢/d0 = ¢(¢). Many authors go further and use the Hamada (1958) coordinate system (¢, 8, V(1)) where

1 ! 1
£= g—f By(RBy)~ dl+2an B;ldz/fBgldz;or. 2nf B;1d1/§B;1dl

and V() is the volume within a magnetic surface. In these non-orthogonal coordinates the field lines are also
straight, d{/d# = g(), and in addition the Jacobean of the transformation to (¢, 0, V), (VE-VAaVY)~1, is a
constant,
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el”S cannot be a periodic function of 8 if ¢(¢) is not a rational constant. Furthermore aperiodi-
city of e!”S cannot be compensated by an appropriate choice of the amplitude 4 since 4 is
assumed to be slowly varying. Clearly what is needed is a representation for standing waves
in a torus that reconciles the anisotropy of wavelengths parallel to and perpendicular to B
with toroidal periodicity, but which still allows one to exploit the small parameter n—1. Recently
such a representation (Connor ef al. 1978, 19794, b) has been developed and this has made
possible rigorous stability analyses of short-wavelength m.h.d. modes in any axisymmetric
toroidal equilibrium.

In essence the method is simple. In any axisymmetric toroidal system the linear stability
threshold is determined by a two-dimensional eigenvalue equation:

L(0, ¥) £(0, ¥) = AE(0, ¥). (3)
The operator L is periodic in ¢ and the eigenfunction £ must also be periodic. In the ideal

m.h.d. problem L is a second-order differential, containing the differential operators L, and L,

10

where 2
Ly =5 —ing(¥); L.= T (4)

Were use of the eikonal representation (equations (1) and (2)) permissible these operators
would transform as L &> dA/do; L,E-id(6,—0) ¢ +0(n-Y) (5)

and the two-dimensional equation (3) would have been reduced in leading order of an expan-
sion in n~! to a one-dimensional equation for 4(6) with ¥ and 6,(¢) appearing only as para-
meters.

With this in mind we express £ (Connor et al. 1978) in the form

0

£0,9) = e [* amkly, p) oy (0
which ensures that £ is periodic in 6. The function £ need not be a periodic function of y, but
any £ which is a solution of Ly, ) £y, ¥) = AL(y, ¥) (1)

in the infinite domain —co < y < oo will generate a periodic solution of equation (3) with the
same eigenvalue. In effect the transformation (6) replaces the periodic problem in real space
(i, 6) with an equivalent problem (with the same operator and the same eigenvalue) in the
infinite domain. The point of this crucial step is that £(y, ) can now be represented in the
eikonal form £ = A exp [inS({, y, ¥)], where

S w9 = C-at) v+ [ dpgn) (8)

and A(y, ¥) is a slowly varying amplitude which can be calculated by expansion in z~%.
When this is done the m.h.d. eigenvalue equation becomes, in leading order in n~1,

VS| 2)'x A B-VS

Bz B2 A = O’ (9)

(1)2
B-V{ B-VA}-l-pl—;—zIVSPA-—
where & = (b-V)b is the curvature of a magnetic line of force (b = B/|B|), p and p(¥) are
the fluid density and pressure, and the eigenvalue w? is assumed to be close to marginal stability
(i.e. w2R2q%/p < 1). Equation (9) is to be solved in the infinite y-domain in which equilibrium
quantities such as ¥ and B are periodic, but VS contains secular terms proportional to the
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STABILITY THEORY OF TOROIDAL PLASMAS 563

magnetic shear ¢’(y) which therefore has a marked influence on w and hence on stability.
The boundary condition to be satisfied by 4 is determined by the requirement that the trans-
formation (11) converge, and the solution A(y) then determines the local two-dimensional
structure of £(6, ¢). Equation (9) also determines a local eigenvalue &%(y, yo(¥)) which de-
pends parametrically on ¢ and the arbitrary poloidal angle y,. To determine the relation
between this intermediate eigenvalue ®2 and the global eigenvalue w? higher-order theory in
n~1is required. When this higher-order theory is developed (Connor et al. 19794, b) one finds
first a condition determining the unknown y,; it must be at a minimum of #2(y,) which,
because of symmetry, is frequently on the horizontal mid-plane at y, = 0. Then with y, fixed
one finds a second ordinary differential equation for the amplitude A, this time in the flux
coordinate ¥r: 0 4 M2AD aAs '

cé_;: %%— +(¢q')? [2n(w2—w3) — a2 %;;2] 4=0, (10)

where w§ = #2(Yy, y,) is the minimum value of @ and x = (¥ —1,) n}. This gives a Gaussian
solution for A(x) and determines the global eigenvalue w? as

1 (amz azaz)%
2nlq’| \ oy5 Oy

showing that the shortest-wavelength modes, n — o0, are the most unstable.

w* = O* (Yo, %o) + (11)

high-n limit

finite-n corrections

low-n 2-D code results

(0] I 1 J
©

10 5 2 1

Ficure 2. Growth rate for an unstable equilibrium in JET, plotted against toroidal mode number n. This
shows 7 — oo limit, finite-n corrections, and low-n (n = 1, ..., 4) results obtained from a two-dimensional
computer code.

Thus it can be seen that the present technique allows one to break down the original two-
dimensional eigenvalue problem into two successive one-dimensional problems. The first, in
the extended poloidal variable y, determines a local eigenvalue &2(¢, y,) and determines the
local two-dimensional structure of the mode. The local eigenvalue &2 then provides the co-
efficients for a second one-dimensional equation which determines the global eigenvalue w? and
the slow transverse dependence of the envelope of the mode A((¥ — ) nt). An example of the
application of these methods is shown in figure 2 in which growth rate is plotted against n
for an unstable equilibrium in JET. The figure also shows that the growth rates calculated
by the present technique for large mode numbers 7 connect smoothly onto those computed by
the two-dimensional, Sykes—Wesson, initial-value code for low mode numbers.
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(c) Alternative representations of toroidal eigenmodes

Before we consider applications of the transformation (6) to other plasma models and
stability problems it is instructive to consider other versions of this representation. Several
independent groups (Pegoraro & Schep 1978, Lee & Van Dam 1979, Glasser 1979) developed,
almost simultaneously, equivalent representations for toroidal eigenmodes but alternative
approaches offer different insights. Lee & Van Dam (1979), for example, argued along the
following lines. For each value of z, a toroidal eigenmode will be composed of many poloidal
harmonics £,,e™’. Because of the requirement of long parallel wavelength each poloidal
harmonic will be centred on (and localized about) its own mode rational surface, i.e. that
magnetic surface on which k,,- B oc (m—nq(y)) = 0. Neighbouring £, must therefore be sepa-
rated by a small flux Ay = 1/ng’ where, if m = nq(y), then m+1 = ng(¥ + Ay¥). Now, since
equilibrium quantities do not vary on this scale there must be local iranslational invariance and
the £, will be related by

En(¥) = & (Y —AY) = ... = (Y —mAY). (12)

Thus, remarkably, the mathematical treatment of short-wavelength toroidal eigenmodes is
similar to the Bloch analysis of lattices in solid state physics. Using equation (12) and the
Poisson sum formula Lee & Van Dam arrived at the following series representation for £(0, ¥):

£0,9) = =§_ _F(0+A+2al) exp [ing (6 + A +2n)] (13)

which is similar to the form developed at Princeton by Glasser and others, and equivalent to
(6) plus the eikonal transformation. Other authors (notably, Pegoraro & Schep 1978;
Tsang & Catto 1977) followed a similar line of argument.

What is clearly revealed in this approach is the true nature of the n~! expansion. This is an
expansion in Ay/y = (mirq’)~L. Evidently for low shear equilibria, ¥¢’/¢ < 1, higher values
of n are required for the validity of the theory, and agreement between computed, low-z,
results and high-z theory may be more difficult to obtain.

In an alternative treatment of equation (9) this equation is solved for A(y) with y,(¢, )
as eigenvalue. A higher-order theory (Chance et al. 1979) in n~! then generates a second eigen-
value equation in the form of a W.K.B. phase integral of the form

lg'| § Dro(w, )T dpr = (N+) x (14)

which determines the global eigenvalue w. Within ideal m.h.d. the most unstable mode is
N = 0, and this phase integral gives the same eigenvalue as equation (10), but in other stability
problems it represents a significant generalization of the higher-order theory.

4. SHORT-WAVELENGTH RESISTIVE MODES IN A TORUS

When the new mode representation is applied to the resistive m.h.d. equations in a torus the
eigenvalue problem reduces, in leading order, to a pair of coupled one-dimensional equations
(Glasser 1979, Chance et al. 1979). By taking the low-frequency limit again, for simplicity,
these reduce to a single resistive eigenmode equation (Bateman & Nelson 1978):

|VS|2 w2p|VS[2A_2p’x AB.VS
B2(1 + (in/w) n?|VS B2 B?

B-V‘ 2)} B-VA+ A=o, (15)
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which differs from its ideal m.h.d. counterpart (9) only in the appearance of a ‘small’ secular
resistive term proportional to n27,/1:, where 7, = Rq(p/B?)? is the Alfven transit time and
Tr = a?/nc? is the resistive diffusion time. Because 7,/7: < 107 in a typical tokamak, for
moderate values of 7, n?7,/7: < 1 and the effect of resistivity is to modify the ideal m.h.d.
equation only at large values of the independent variable y. Resistivity therefore has the effect
of modifying the boundary conditions as ¥ — + oo, on the ideal m.h.d. equation. This demon-
strates the Fourier-transform nature of the extended poloidal variable y, since in real space
the effect of resistivity is important only in a narrow layer around k- B = 0.

12
8
N
3
g 4r
=
2 n21;/7;=7><10"3
~ 0 unstable
stable
—4 L . )
0 4 8 12

102 Re wt,

Ficure 3. Behaviour of the complex frequency w as a function of n%7, /7, for resistive m.h.d. modes.
The arrows are in the sense of increasing n2t,/7,.

The resistive equations have been investigated in detail in a series of elegant papers by the
Princeton group (see, for example, Glasser et al. 1979). Figure 3 shows an example of the
complex mode frequency as a function of n27, /7;. This shows stability for n?r, /7 < 7 x 1073,
and instability for higher values of n.

Thus detailed calculations of the stability of both ideal and resistive modes within the m.h.d.
model can now be made for any axisymmetric toroidal equilibrium. Such calculations show
that two dissimilar ideal m.h.d. instabilities are the most persistent and they place the severest
restrictions on . These are (i) the low-n free-boundary modes (see, for example, Chance et al.
1979) occurring when a vacuum region separates the plasma from a conducting wall, and (ii)
the n — co internal modes described by the new theory. They also show, as predicted by
Roberts & Taylor (1965), that as n— co a resistive pressure-driven mode always becomes
unstable. The m.h.d. model breaks down however as n — co since perpendicular wavelengths
become comparable to the ion Larmor radius. To resolve this it is necessary to turn to the
more detailed description afforded by the Vlasov or Fokker-Planck equations which also
permit the investigation of a variety of micro-instabilities such as the electron drift wave.

5. VLASOV-MAXWELL STABILITY

The transformation (6), or one of its equivalent forms, can be used directly on the perturbed
distribution functions and fields in the Vlasov or Fokker—Planck equations, though some authors
delay its introduction until approximate solutions of these equations have been obtained in
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real space. To retain finite Larmor radius (f.L.r.) effects the mode number 7 is related to the
small Larmor radius parameter so that nai/L ~ O(1), where g; is the ion Larmor radius and
L is an equilibrium scale length. In lowest order in n~! the two-dimensional eigenvalue problem
in ¢, @ is reduced to a set of three integro-differential equations (Lee & Van Dam 1979;
Antonsen & Lane 1980; Tangetal. 1980). These equations contain complicated kernels involving
multi-dimensional velocity—space integrations, but the structure of the problem is once again
one-dimensional in the extended poloidal variable y(—oo < y < o0), with parametric depen-
dence on ¥ and y,(¥). The equations contain many kinetic effects not described by fluid
theory, and are currently the centre of considerable theoretical activity.

For a low-g plasma (f < a/Rg¢?) electron drift waves become predominantly electrostatic
and a single eigenmode equation has been derived for such waves. Computer codes for the
solution of this integral equation have been written and solutions obtained (Frieman et al.
1979; Connor ef al. 1979¢).

The fully electromagnetic equations have been derived in both the collisionless limit and
in a collisional limit and, by specializing to magnetohydrodynamic modes, generalizations of
the m.h.d. eigenvalue equations (9) or (15) have been obtained. Thus, including collisions,
Lee et al. (1979) have obtained a kinetic generalization of the resistive m.h.d. equation:

|VS[2
B2(1+4n2|VS|?/w)

where 7 is a modified resistivity, § = 7(1 — @ ye/0), Wi = (nTi/e;) (0 (In pi)/0Y) and
wse = n(Tefec) (d (In p) /).

Because of the coupling of the n~! expansion to the aj/L-expansion the higher-order theory
in the Vlasov—Maxwell model is extremely complicated, but Frieman et al. (1979) have given

1952
B2

,kx B-VS

B-V =

B-VA}+w(w—w*i) A-2p 4 =0, (16)

the appropriate version for an electrostatic mode in slab geometry and, as conjectured by many
other authors, the W.K.B. phase integral condition (14) emerges as the eigenvalue equation.

SUMMARY AND CONCLUSIONS

A novel method of representing short-wavelength eigenmodes in a torus has been developed
recently. This has led to a complete theory of short-wavelength m.h.d. modes, complementing
the existing numerical methods for determining the stability of long-wavelength modes in a
torus.

The m.h.d. stability of any toroidal equilibrium can now be precisely determined.

The new methods are also applicable to the more basic set of plasma equations — the Vlasov
or Fokker-Planck equations, for ions and electrons, coupled to the Maxwell equations. These
equations permit the investigation of kinetic effects on m.h.d. modes as well as of various
micro-instabilities. Thus the recent advances described here have also opened up new possi-
bilities of accurately calculating the linear stability of high-temperature, almost collisionless
plasmas whose behaviour is not adequately described by fluid equations.

The Culham Laboratory contribution to the work described above is due largely to Dr J. B.
Taylor, F.R.S., and Dr J. W. Connor with whom I have had the pleasure of working and
discussing much of this material. Several other groups of authors have developed similar ideas
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to which I have not been able to do full justice, but I should like to acknowledge my indebted-
ness to Dr A. H. Glasser, Dr R. L. Dewar, Dr F. Pegoraro and Dr T. J. Schep for illuminating
discussions and to Dr Y. C. Lee and Dr J. W. Van Dam whose work I have studied with
interest.
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